EVALUATION OF QUANTITATIVE STRUCTURE-ACTIVITY PREDICTIONS. COMPARISON OF THE PREDICTIVE POWER OF AN ARTIFICIAL INTELLIGENCE SYSTEM WITH HUMAN EXPERTS

Gilles KLOPMAN* and Istvan KOLOSSVARY* Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA

Received 12 February 1990

Abstract

In this paper, we present three new mathematical techniques for evaluating the predictive skills of structure-activity experts. The question addressed in this paper is how to evaluate the predictive ability of structure-activity experts in identifying the most active compounds of a set of drug candidates. The three proposed mathematical techniques are based on the Phi-square Distance, the Rank Comparison, and the Shuffle method, respectively. They have been used to evaluate the performance of a new computer system and three human experts in predicting the antibacterial potencies of a series of chemical compounds in five different biological tests. The expert system, an artificial intelligence structure-activity program called MULTICASE, performed significantly better than one of the human experts and somewhat better than the other two.

Keywords

Prediction, validation, evaluation, ranking, tie, artificial intelligence, expert system, structure-activity relationships.

1. Introduction

In designing new drugs, it is common to venture guesses as to the biological activity of the molecules planned for synthesis. These guesses are implicitly made by all chemists who design a new structure, and explicitly made by structure-activity experts who may rank for priority synthesis a set of potential candidates for biological evaluation. However, rarely is a process generated to evaluate how relevant these guesses were and very few methodologies are known to help evaluate the predictions, once the compounds are made and tested.

^{*}To whom all correspondence should be addressed.

^{*}On leave from the Department of General and Analytical Chemistry, Technical University of Budapest, Szt. Gellert ter 4, 1111 Budapest, Hungary.

A number of groups have devised computer systems aimed at automating the prediction of biological activity of compounds, and it occurred to us that good validation techniques are necessary if these techniques are to be trusted and used to support human intuition. In the course of this study, we found that humans are often prone to self-indulgence about their own ability to predict. In the same vein, we found that automated techniques are not always as good as hoped when they are used to predict previously unknown facts, even when they have been validated within the domain of knowledge at the time.

Given a database of chemical structures and their associated activities (e.g. inhibitory, antibacterial, or pesticide potencies), one can divide the database randomly into a training set and a test set. Using a quantitative structure-activity relationship (QSAR) model, which in most cases is a linear combination of some molecular descriptors (such as molecular volume, topological indices derived from the connectivity graph of a molecular structure, some kind of physico-chemical properties, the presence of particular molecular substructures, etc.), a model can be developed from the training set and used to predict the activity of the compounds of the test set. This generally means that the model parameters, i.e. the linear coefficients of the selected molecular descriptors in the QSAR equation, which are determined from the training set, are then validated on the test set. The random partitioning of the database into a training set and a test set, as well as the corresponding model identification and validation, can be carried out repeatedly to check the stability of the QSAR model, i.e. to see how much the goodness of the predictions on the test set varies with the different random partitionings. Classical methods such as the sample F-test, chi-square, or nonparametric tests, as well as more recently developed techniques such as boot-strapping and cross-validation, are at the user's disposal. It is impossible to reference the very large amount of work published on this problem in the statistical literature. References [1-5], however, should help the interested reader to find relevant sources.

At this point, we wish to introduce the sharp distinction that exists between *validation* and *evaluation*. The *validation* of a QSAR model, as outlined in the previous paragraph, is based on a number of analyses and gives general credibility to the model. *Evaluation*, on the other hand, tells one how well the model is performing in a specific case, usually consisting of molecules unknown to the expert at the time of the development of the method. It should be noted that any kind of validation is meaningless without good evaluation. Indeed, if the knowledge of the activity of some molecules contributed to the *selection* of the methodology, or its *parameters*, then the activity of these molecules should not be used to validate the methodology, since this will provide no clue as to the generality of the method outside its learning domain. In a way, one may relate validation to interpolation, and evaluation to extrapolation. Our purpose here is not to discuss *validation* but to *evaluate* how well various techniques perform in a predictive mode, after they have been "validated".

In this paper, we thus attempt to find an answer to the question: How to *evaluate* the performance of a structure-activity expert, automated or human, in predicting the activities of a set of *new* chemical compounds? Or, more precisely, since one is

generally more concerned with the active compounds than with the inactive compounds, the question is how to evaluate the performance of a QSAR technique in identifying the most active compounds, i.e. the best candidates for further study. The problem is compounded by the fact that there is no advance knowledge of how many of the test compounds are in the "active" category.

An interesting analogy to the problem is weather forecasting where, for instance, one might wish to compare the ability of meteorologists to predict the sunny days of the next month. There is no advance knowledge of which days will be sunny nor, for that matter, of how many days, if any, will be sunny. In this paper, we tried to answer this kind of question by introducing new mathematical techniques for the evaluation of SAR predictions. Three evaluation methods based on the Phi-square, the Rank Comparison, and the Shuffle method will be presented and compared in an experiment where the predictions made by an expert system and by three human volunteer experts have been evaluated.

2. Methods

2.1. DEFINITIONS

The problem, as we see it, can be stated as follows. An expert studies a learning set of compounds whose structure and experimental activity is given. Once the learning set has been rationalized and possibly validated, the expert faces a set of N test compounds. The experimental activity of the N compounds is known but not made available to the expert. The expert predicts the activity of the N test compounds, which can then be ranked by ascending activity as measured and as predicted by the expert. If the measured and the predicted rankings, as well as the level of the measured and the predicted activities are identical, then a perfect prediction would have been made. However, this is seldom the case and the question is how good is the prediction and, in general, how can we measure the difference between two different rankings?

2.1.1. Phi-square Distance

We explored the possibility of using a slightly modified chi-square test [1], which we call Phi-square Distance, to measure how well the prediction of the active test compounds match the experimentally observed active compounds. The Phi-square Distance between two rankings can be calculated as follows. First, the test compounds are divided into four categories: true positives (TP), false positive (FP), false negatives (FN), and true negatives (TN). True positives is the number of active compounds which are also predicted to be active. False positives are the rest of the compounds predicted to be active, i.e. inactives misclassified as actives. Similarly, false negatives is the number of active compounds misclassified as inactives and true negatives are the inactive compounds predicted correctly to be inactive. As far as mathematics is concerned, it is a nice feature of the Phi-square Distance that the breakpoint between

actives and inactives is arbitrary, therefore allowing studies to focus on the top n (1 < n < N) compounds. In other terms, it allows us to evaluate what the Phi-square Distance is between the measured and the predicted ranking considering the top n compounds to be active. The breakpoint, in practice, is always determined by the expert working with the compounds, not by the person who evaluates the predictions. As far as the predicted ranking is concerned, the breakpoint between actives and inactives can be defined in two different ways. Either the measured activity of the *n*th compound defines the breakpoint between actives and inactives and inactives can inactives in the predicted ranking, or the first n compounds of the predicted ranking are considered to be active. These two alternatives lead to what we call the quantitative and the qualitative Phi-square Distance methods, respectively. The Phi-square Distance, *PSD*, can be calculated as follows:

$$PSD = \frac{TP^2}{A1*A3} + \frac{FP^2}{A2*A3} + \frac{FN^2}{A1*A4} + \frac{TN^2}{A2*A4} - 1$$
(1)

where A1 = TP + FN, A2 = FP + TN, A3 = TP + FP, and A4 = FN + TN.

It can easily be shown that in the case of chance predictions, i.e. when activity is assigned randomly to each of the test compounds, the PSD will be equal or close to zero. On the other hand, perfect prediction gives a PSD = 1. However, it should be noted that a perfect inverse prediction, i.e. when the predicted ranking is a perfect ranking of the test compounds in the reverse order of activity, PSD will also be equal to one. Equation (1) is the square of what is called the "phi coefficient" in ref. [1], pp. 26–27; however, we have done some algebraic manipulations in order to achieve a more readable expression. The Phi-square Distance PSD multiplied by the number of test compounds N follows the chi-square distribution with one degree of freedom. This fact allows one to calculate the probability that a particular prediction of a test set is due to pure chance [6]. Thus, a chi-square value of 3.84 indicates that there is a 5% probability of obtaining such a fit by chance. A value of 6.63 indicates only a 1% probability that such results could have been found by chance. It should be noted, however, that our objective is to measure the quality of a prediction rather than to calculate its probability of being due to chance.

It is evident that two Phi-square Distance values both equal to, say, 0.5, achieved with two test sets of different size, are not equivalent as far as the probability of being a chance "prediction" is concerned. However, the quality of those two predictions is indeed the same, and only this is what counts during the course of this study.

2.1.2. Rank Comparison method

Another evaluation technique we developed for our experiment is the Rank Comparison method. In this method, we do not use the activity values, but rather compare the measured and the predicted rankings. As with the Phi-square Distance, the first n most active test compounds are selected as active and one counts how many of

the topmost compounds (K) of the predicted rankings must be considered in order to include a fixed percentage (X) of the *n* active compounds of the test set. A reasonable choice of X lies between 50% and 90%. Less than 50% would be a rather weak criterion, whereas a percentage above 90% should also be avoided so that a single or a few badly mispredicted compounds will not unduly affect the outcome of the evaluation. It should be noted that with the Rank Comparison method, chance prediction never turns out to be zero. Since the chance prediction is a fixed percentage times the number of test compounds, it varies with both the strength of the percentage criterion and the size of the test set. A simple normalizing transformation is necessary to make the Rank Comparison method comparable with the Phi-square Distance, i.e. to set the chance prediction equal to zero and the perfect prediction equal to one.

The normalized Rank Comparison Measure (NRCM) can be calculated as follows:

$$NRCM = \frac{(X * n/K) - (n/N)}{1 - (n/N)} = \frac{RCM - \text{Chance}}{1 - \text{Chance}},$$
(2)

where K is the number of the topmost compounds in the predicted ranking that should be considered in order to include a fixed percentage (X) of the n actives out of the N test compounds. NRCM is equal to zero for chance prediction, and equal to one for "perfect" prediction when K = X * n. However, NRCM can also be negative, indicating that a tendency existed to predict inactive compounds to be active and vice versa.

2.1.3. The Shuffle method

We call the third evaluation technique the Shuffle method. It is similar to Spearman's rank correlation coefficient [7], i.e. it is based on the rank difference of the same object in two different rankings. The Shuffle method, unlike the Phi-square Distance and the Rank Comparison Measure, leads to a global index of "shuffleness", which is a measure of how much it is necessary to shuffle the measured ranking to produce the predicted ranking. Simply, the sum of the absolute differences between the ranks of the corresponding compounds in the measured and in the predicted ranking is compared to that expected to be found by random shuffling. A straightforward weighting process allows one to focus on predicting active compounds. Each rank difference is weighted by the measured activity of the corresponding compound. It can easily be shown that the sum of the absolute rank differences with random shuffling is expected to be equal to:

$$-\frac{1}{N}\sum_{i=1}^{N-1}i(i+1).$$

The weighted measure of "shuffleness" (WSHF) is then given by the following equation:

$$WSHF = 1 - \frac{\sum_{i=1}^{N} \text{ meas. activity } * ABS (\text{meas. rank} - \text{pred. rank})}{\frac{1}{N} \sum_{i=1}^{N-1} \frac{i(i+1)}{2} * (\text{ meas. activity } + \text{ meas. activity})}_{[of \text{ compound } N - i]} + (\text{meas. activity})}_{[of \text{ compound } i + 1]}, (3)$$

where the "measured activity" terms are the weighting factors. It should be noted that in cases where the activity is measured on an inverted scale, i.e. where the most active compounds are associated with the lowest numbers on the activity scale, the weighting factors in eq. (3) should be replaced by the corresponding reciprocal activities. *WSHF* is expected to be zero for chance prediction and equal to one for perfect prediction. As for *NRCM*, *WSHF* is also negative in the case of an inverted prediction.

2.2. TIES IN THE RANKING

Each evaluation method described in the previous section is relatively simple to use and easy to automate. However, there is a problem that makes the correct evaluation of predictions much more difficult. This problem arises from the common occurrence of ties in the ranking. Indeed, it often happens that two or more compounds are associated with the same activity value, forming a tie in the ranking. Actually, automated as well as human experts may use only a few categories to rank the whole set of test compounds; for example, very active, active, and inactive. Also, sometimes the measured activity of two compounds just happens to be the same. The existence of ties in the ranking creates problems for each of the evaluation methods discussed above. Since it does not make sense to differentiate between compounds within a tie, the test compounds must not be split into actives and inactives within a tie, either in the measured or in the predicted ranking. This means that n should always point to the end of a tie in the measured ranking. For the predicted ranking, this criteron is automatically fulfilled by the quantitative Phi-square Distance method, where the splitting among actives and inactives is based on a threshold activity value, which means that a tie is always completely on one side of the threshold. However, the application of the qualitative Phi-square Distance method (where the number of measured actives is in principle equal to the number of predicted actives) presents a serious problem, since the number of measured and predicted actives might be significantly different due to different ties in the measured and in the predicted ranking.

The Rank Comparison method can handle the ties in the following way. Let x be equal to the nearest integer to X*n, i.e. x is the rounded X% of the n active test compounds. If the xth in the predicted ranking of the first n most active compounds falls into a tie (T), then K in eq. (2) is calculated as follows:

$$K = \text{number of compounds} + \text{number of compounds} * \frac{X * n - y}{z}, \quad (4)$$
ranked before T tied within T

where y and z are the numbers of the first n most active test compounds ranked before T and ranked within T, respectively.

The Shuffle method is also affected by the presence of ties in the ranking. Both the measured and the predicted rank of compound i may be tied, which means that it does not make sense to compare the two ranks directly. In both the measured and the predicted ranking, the beginning and the end of the tie including compound i are determined. In the case of no ties at all, the corresponding beginnings and ends coincide, which means that eq. (3) is unaffected. If ties do exist, then the absolute rank difference in eq. (3) must be calculated as follows:

$$ABS (\text{meas. rank} - \text{pred. rank}) = \frac{\sum_{m=\text{beg}}^{\text{end}} \sum_{p=\text{beg}}^{\text{end}} ABS(m-p)}{(\text{end} - \text{beg} + 1)_m * (\text{end} - \text{beg} + 1)_p}, \quad (5)$$

which is the average absolute difference between the measured (m) and the predicted (p) rank of compound *i* taking all possible positions of this compound within its ties into account.

2.3. A WORKING EXAMPLE

To become familiar with the rather abstract definition of the evaluation methods introduced in the previous sections, let us show a simple working example. In table 1, the measured and the predicted ranking of ten compounds are listed (imaginary data).

	Measured compound	l ranking l activity	Predicted compound	ranking activity
	А	25	А	28
	В	19	С	22
Actives	С	18	E	22
	D	18	F	22
			G	22
	Е	11	В	18
	F	9		
	G	9	н	8
Inactives	н	4	D	5
	I	1	Ι	3
	Ĵ	1	J	3

Table 1

Measured and predicted ranking of ten imaginary compounds

Table 1 (continued)

Quantitative Phi-square Distance:

N = 10, n = 4, threshold activity = 18, TP = 3 (A, B, C), FP = 3 (E, F, G), FN = 1 (D), TN = 3 (H, I, J), A1 = 4, A2 = 6, A3 = 6, A4 = 4,

$$PSD = \frac{3*3}{4*6} + \frac{3*3}{6*6} + \frac{1*1}{4*4} + \frac{3*3}{6*4} - 1 = 0.0625.$$

Qualitative Phi-square Distance:

N = 10, n = 4, predicted actives (A, C, E, F, G) (G is tied with C&E&F!), TP = 2 (A, C), FP = 3 (E, F, G), FN = 2 (B, D), TN = 3 (H, I, J), A1 = 4, A2 = 6, A3 = 5, A4 = 5,

$$PSD = \frac{2*2}{4*5} + \frac{3*3}{6*5} + \frac{2*2}{4*5} + \frac{3*3}{6*5} - 1 = 0.000.$$

Rank Comparison method:

$$X = 50\%, N = 10, n = 4,$$

$$K = 1 + 4(0.5 * 4 - 1)/1 = 5,$$

$$NRCM = \frac{0.5 * 4 / 5 - 4 / 10}{1 - 4 / 10} = 0.000.$$

$$X = 75\%, N = 10, n = 4,$$

$$K = 6,$$

$$NRCM = \frac{0.75 * 4 / 6 - 4 / 10}{1 - 4 / 10} = 0.167.$$

Shuffle method:

The numerator for eq. (3) is the sum of the following terms: 25 * 0 = 0 (A), 19 * 4 = 76 (B), 18 * (1 + 0 + 1 + 2 + 2 + 1 + 0 + 1)/(3 - 2 + 1)/(5 - 2 + 1) = 18 (C), 18 * (5 + 4)/2 = 81 (D), 13 * (3 + 2 + 1 + 0)/4 = 19.5 (E), 9 * (4 + 3 + 2 + 1)/4 = 22.5 (F), 9 * (5 + 4 + 3 + 2)/4 = 31.5 (G), 4 * 1 = 4 (H), 1 * 0 = 0 (I), and 1 * 0 = 0 (J).

The denominator for eq. (3) is equal to 0.1(1(1 + 19) + 3(4+18) + 6(9 + 18) + 10(9 + 13) + 15(13 + 9) + 21(18 + 9) + 28(18 + 4) + 36(19 + 1) + 45(25 + 1)) = 387.1, and *WSHF* is thus equal to:

WSHF = 1 - (0 + 76 + 18 + 81 + 19.5 + 22.5 + 31.5 + 4 + 0 + 0)/387.1 = 0.348.

From a casual inspection of table 1, the measured and the predicted rankings do not appear to be too much different. However, focusing on the top four active compounds (A, B, C, D), the predicted ranking turns out to be not much better than chance prediction (see the *PSD* and the *NRCM* results). Only the Shuffle method gives a somewhat higher value (0.348), which means that the overall prediction is better than the prediction of the top four compounds.

2.4. DATA

An experiment has been run to evaluate the predictive power of our new artificial intelligence structure-activity technique, which is called MULTICASE [8]. MULTI-CASE is the recent and totally redesigned version of the CASE (Computer Automated Structure Evaluation) program [9]. In the experiment, the predictions of the antibacterial potencies of a series of compounds in five different tests by MULTICASE and three human experts have been compared. Several hundred compounds were tested for their antibacterial potency in five different standard tests (Gram Negative Mics (AP1), Gram Positive Mics (AP2), DNA Gyrase Inhibition (AP3), Mean Subcutaneous Protective Dose in Mice (AP4), and Mean Oral Protective Dose in Mice (AP5)) by a cooperating pharmaceutical company. Of these, sixty-nine were selected by one of the experts to become the learning set and fifty-three were to be used as a test set. No information beyond the molecular structures of the learning set was given. No prior or additional information was to be used by the experts. The actual number of test compounds in the DNA Gyrase test and in the Mice tests is less - forty-four and thirty-four, respectively - because the experimental activity of some of the test compounds had not been measured in these tests. The breakpoint between actives and inactives was determined in all of the five tests by one of the human experts, C2, based on the standards of the pharmaceutical company.

3. Results

In table 2(a) to 2(e), the comparison of the rankings of the test compounds in the five tests is presented. In each table, the leftmost column is the measured ranking (ME), followed by the predicted ranking by MULTICASE (MC) and by the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by vertical bars alternating on the left- and on the right-hand side of the columns. The tables are split into two parts, separating the measured actives from the measured inactives, as well as the predicted actives from the predicted inactives for all of the experts, based on the breakpoint defined by the company standards. The three human experts are leading chemists of the cooperating pharmaceutical company. However, their preknowledge of the results was somewhat different. Indeed, both C1 and C2 had been working for several years with antibacterial agents and are experts in that area. C1 compiled the data set and selected the learning and the test set, C2 had been

Table 2(a)

Comparison of the rankings of the test compounds in the Gram Negative Mics Test. The leftmost column is the measured ranking (ME), followed by the predicted ranking of MULTICASE (MC) and of the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by vertical bars alternating on the left- and on the right-hand side of the columns

	ME	MC	C1	C2	C3	
	41 50 29 32 43	41 50 42 15	43 42 37 44 41	41 29 43 26 15 44	41 29 43 14 26 30	
Actives	46 48 14 18 42	43 45 29 43 49 14 11	32 49 48 38 40 39	50 32 49 46 48	48	
Inactives	11 10 17 22 37 20	17 37 20 26 30 38	45 29 11 22 26	14 42 11 10 17 22	42 11 10 22 38 34	
	26 30 38 40 52 34	40 39 31 08 21 24	30 52 15 31 47 46	37 30 38 40 52 34	28 25 51 24 50 46	
	28 39 45 15 25 31	16 27 44 47 19 13	18 34 21 24 16 27	39 45 25 31 35 51	17 40 39 08 21 27	
	35 51 08 21 24 16	33 18 10 52 23 09	23 14 10 17 28 51	08 21 24 16 27 19	47 07 12 18 37 31	
	27 44 47 23 09 19	32 46 22 34 28 25	19 12 20 25 08 07	12 18 28 47 23 09	16 23 00 33 01 32	
	07 00 13 33 02 01	35 51 07 00 02 01	13 33 00 02 35 09	13 33 20 07 01	49 20 35 44 09 13	
	04 06 12 05 03 36	04 06 12 05 03 36	05 03 36 01 06 04	02 04 06 36 05 03	02 04 06 05 03 36	

Table 2(b)

Comparison of the rankings of the test compounds in the Gram Positive Mics Test. The leftmost column is the measured ranking (ME), followed by the predicted ranking of MULTICASE (MC) and of the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by vertical bars alternating on the left- and on the right-hand side of the columns

_

	ME	MC	C1	C2	C3	
	42 43 41 14 38 31	42 38 37 49 50 32	42 43 50 44 41 38	42 43 41 50 26	41 14 26 17 34 52	***********************
Actives	37 49 50 26 30 46	40 39 41 31 30 17	37 49 32 48 45	14 38 31 37 49 30	28 51 21 22 24	
Inactives	17 32 40 48 21 08	43 24 14 26 48 45	3 31 26 46 40 22 24 34	46 17 32 40 48 22 24	29 25 42 43 38 37 50	
	22 24 35 39 44	13 22 44 18 23 15	39 52 30 15 11 27	34 39 44 15 27 45	30 46 40 48 08 39	
	13 11 27 29 18 45 16	10 12 52 35 21 27 28	29 28 47 51 33 14 17	23 28 21 08 35 19	13 11 27 10 19 23 12	
	25 20 10 19 23 12	47 46 08 34 11 29	21 18 19 23 08 25	52 51 11 29 18 25	31 45 49 32 35 44	
	13 52 28 47 07 09	16 25 20 19 07 09	10 12 13 16 20 07	20 10 12 13 47 09	18 16 20 13 47 07	
	51 02 05 06 04 03	51 02 05 06 04 03	02 03 36 35 09 06	07 02 03 33 00 05	09 02 05 06 04 03	
	33 00 01 36	33 00 01 36	00 05 04 01	06 04 01 36	33 00 01 36	

Table 2(c)

Comparison of the rankings of the test compounds in the DNA Gyrase Test. The leftmost column is the measured ranking (ME), followed by the predicted ranking of MULTICASE (MC) and of the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by vertical bars alternating on the left- and on the right-hand side of the columns

	ME	MC	C1	C2	C3	
	38	38	38	44	43	,
	40	40	40	41	26	
	42	44	42	43	29	
	44	41	44	· · · · · · · · · · · · · · · · · · ·	30	
	41	43	43	38	15	
	43	21	39	40	34	
	21	26	41	42	11	
	26	39	32	26		
	29	27	31	29	41	
A ations	39	25	11	39	10	
Acuves	30	24	471	30	12	
	52	20	121	- 52	12	
	15	32	26	27	40	
Inactives	19	30	29	31	42	
	20	20	30	34	21	
	27	31	15	46	39	
	31	34	27	48	19	
	34	46	34	14	27	
	46	11	48	25	46	
	48	13	28	11	14	
	14	16	22	10	28	
	25	42	45	28	24	
	11	15	33	22	47	
	10	19	24	24	02	
	28	48	19	47	45	
	13	14	20	12		
	22	28	40	43	31	
	22	18	25	10	25	
	24	22	10	20	23	
	47	23	13	13	44	
	07	47	18	23	32	
	08	07	23	07	20	
	09	08	07	08	13	
	16	09	08	16	18	
	12	12	16	33	07	
	02	02	12	18	08	
	45	45	09	09	09	
	33	33	02	02	16	
	00	00	00	05	33	
		05	105	06	05	
		26	00	00	00	
	06	01	100	00	01	
	01	10	101	101	101	

Table 2(d)

Comparison of the rankings of the test compounds in the Mean Subcutaneous Protective Dose in Mice Test. The leftmost column is the measured ranking (ME), followed by the predicted ranking of MULTI-CASE (MC) and of the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by vertical bars alternating on the left- and on the right-hand side of the columns

	ME	MC	C1	C2	C3	
	32	50	32	41	41	
	29	32	41	32	50	
	41	29	49	29	11	
	49	41	50	49	43	
	50	49	11	50	34	
Actives	111	37	43	11	26	
	43	00	34	43	17	
	•		48	34	14	
	34	48	46	26		
Inactives	26	11	37	48	22	
	48	43	31	46	24	
	25	34	42	42	29	
	30	26			J 48	
	46	25	29	25	30	
	10	30	26	30	46	
	15	46	30	10	15	
	37	10	15	15	42	
	31	15	17	37	38	
	42	31	18	31	27	
	17	42	22	17	32	
	18	17	40	22	49	
	22	18	24	24	25	
	40	22	14	14	10	
	24	40	38	00	37	
	20	24	39	108	31	
	14	20	35	18	18	
	00	14	25	40	40	
	(38	38	10	38	20	
	08	08	08	39	00	
	391	39	21	13	108	
	13	13	27	35	39	
	21	21	20	16	13	
	35	35	00	20	21	
	16	16	13	21	35	
	27	27	16	27	10	

-

Table 2(e)

Comparison of the rankings of the test compounds in the Mean Oral Protective Dose in Mice Test. The leftmost column is the measured ranking (ME), followed by the predicted ranking of MULTICASE (MC) and of the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by vertical bars alternating on the left- and on the right-hand side of the columns

	ME	MC	C1	C2	C3	
	49 32 46	49 32 29	41 50	49 29	41 34 43	
	29	37	49	50	17	
	41	00	32	L	26	
	50	41	46	32	14	
	11	50	34	46	24	
	34	48	43	11	46	
Actives	43		48	34	29	
	48		37	43	50	
	22	- 40	42	48	48	
Inactives	22	34	29	24	22	
macuves	118	43	22	17	30	
	42	18	24	22	40	
	00	42	30	37	15	
	24	24	40	42	39	
	30	30	15	31	25	
	40	40	17	25	38	
	15	15	31	26	11	
	17	17	39	00	08	
	31	31	38	15	10	
	39	39	26	18 -		
	08	08	14	40	49	
	25	25	18	39	32	
	38	38	00	08	18	
	13	13	08	38	42	
	20	20	25	13	00	
	26	26	10	20	31	
	35	35	21	35	13	
	10	10	2/	10	20	
	14	14	13	14	55	
	21	21	20	21	21	
	27	27	16	27	21	
	121	21	110	121	121	

Table 3

Evaluation of the rankings of the test compounds in different tests. In each test, the first line is the evaluation of the MULTICASE ranking (MC), the second, third, and fourth lines are that of the human experts, C1, C2, and C3, respectively. In each test, the first column is the quantitative Chi-square Distance, the second column is the qualitative Chi-square Distance, the third, fourth, and fifth columns are the Rank Comparison Measures with X = 50, 75, and 90%, respectively, and finally, the last column is the result of the Shuffle evaluation. N is the total number of test compounds and n is the number of the active test compounds.

	Qnt CSD	Qlt CSD	$NRCM \\ X = 50\%$	NRCM X = 75%	<i>NRCM</i> <i>X</i> = 90%	WSHF
		AP1: Gra	n Negative Mic	s Test ($N = 53$,	n = 11)	
MC	0.146	0.028	0.201	0.069	0.028	0.548
C1	0.042	0.216	0.412	0.167	0.160	0.577
C2	0.066	0.064	0.153	0.103	0.089	0.577
C3	0.052	0.024	0.118	0.050	0.011	0.432
		AP2: Gra	n Positive Mics	Test ($N = 53$, a	n = 12)	
MC	0.324	0.324	0.569	0.538	0.462	0.496
C1	0.251	0.259	0.546	0.392	0.221	0.771
C2	0.356	0.282	0.660	0.369	0.308	0.797
C3	0.022	0.000	0.082	0.117	0.136	0.304
		AP3: DN	A Gyrase Inhibi	tion Test ($N = 4$	14, $n = 12$)	
MC	0.347	0.521	0.625	0.656	0.390	0.588
C1	0.421	0.342	1.000	0.509	0.390	0.749
C2	0.195	0.145	0.312	0.214	0.187	0.440
C3	0.085	0.091	0.214	0.163	0.042	0.201
		AP4: Mea	in Subcutaneous	Protective Dos	e (N = 34, n =	7)
MC	0.410	0.410	0.669	0.637	0.594	0.646
C1	0.289	0.289	0.370	0.370	0.370	0.504
C2	0.117	0.475	0.530	0.493	0.481	0.707
C3	0.163	0.163	0.370	0.148	0.020	0.203
		AP5: Mea	in Oral Protectiv	ve Dose ($N = 34$	(n = 10)	
MC	0.308	0.000	0.595	0.390	0.080	0.653
C1	0.150	0.514	0.764	0.722	0.356	0.636
C2	0.320	0.673	0.871	0.732	0.692	0.759
C3	0.043	0.034	0.128	0.102	0.039	- 0.206

intimately involved with the synthesis of the compounds. C3 is the only expert with apparently no a priori knowledge about the set of compounds used in the experiment.

The evaluation results are presented in table 3. Each ranking in each test is evaluated in six different ways. These are the quantitive Phi-square Distance, the qualitative Phi-square Distance, and the Rank Comparison Measure with X = 50, 75, and 90%, each focusing on the active test compounds, and finally, the Shuffle method. The total number of the test compounds (N) and the number of the active test compounds (n) is also shown for each test in table 3.

4. Discussion

4.1. DISCUSSION OF THE METHODOLOGIES

If the measured potency threshold is greater than any of the predicted potencies, i.e. when there are neither true nor false positives, even a perfect ranking gives an undefined *PSD* value when using the quantitative Phi-square Distance. It should be noted, however, that this is more of an advantage than a disadvantage of the method. Indeed, the quantitative Phi-square Distance characteristics are such that even if the ranking itself is perfect, if none of the active compounds are predicted to be active, then this prediction is definitely a bad prediction.

In the theoretical section of this paper, it was mentioned that the qualitative Phisquare Distance method, where the number of measured actives is in principle equal to the number of predicted actives, had a serious drawback in practice. This is vividly demonstrated in, for example, the Oral Protective Dose case where the number of active test compounds is ten (see table 3). It can be seen that the qualitative Phi-square Distance is equal to zero for the MULTICASE prediction, which is obviously nonsense. The reason for the strange result can be found in table 2(e), where it is seen that the tenth compound in the MC ranking is tied with all of the remaining compounds. This means that the whole test set is considered to contain only active compounds, i.e. there are neither false nor true negatives causing the undefined *PSD* result.

The Rank Comparison method evaluates the rankings regardless of the predicted potency levels. The use of ranks eliminates the problems which would otherwise occur when attempting to relate potencies for each of the scales used for predictions. This is not, however, necessarily an advantage over the quantitative Phi-square Distance method for, as we stated earlier in this section, the evaluation of the rankings does not make too much sense when nothing can be said about the predicted potency levels. Furthermore, even when restricting ourselves to the ranks, there are still problems with the Rank Comparison method. Indeed, we find that there are too many degrees of freedom involved with the choice of X%. It is clear that X% should fall somewhere between 50% and 90%, but there is no clue as to what the optimum value ought to be. We cannot even say that X = 75% or X = 90% is always a sharper criterion than X = 50% (see, for instance, in table 3 the C3 prediction in the Gram Positive Mics test or the C1 prediction in the Subcutaneous Protective Dose test). In addition, we find,

for example, that the C1 prediction of the active test compounds in the DNA Gyrase test is better than that of MC with X = 50% (1.000 versus 0.625), but the opposite is true with X = 75% (0.509 versus 0.656) and with X = 90%, C1 and MC are both found to be equal to 0.390.

Thus, in general, the numerical value of the Rank Comparison Measure is a rather unpredictable function of X%. This makes the utility of the method quite questionable. This problem is even more serious when one considers that with a "perfect" prediction, *NRCM* is always equal to one, regardless of X% (see eq. (2)). This means that the level of "perfectness" is not taken into account in the Rank Comparison method. In other words, the fact that it is easier to predict "perfectly" with X = 50% than with X = 90% is completely ignored. However, it is possible that the comparison of two different rankings on different levels of X%, which may be a rather complicated procedure, is the correct way of using the Rank Comparison method.

A serious problem arises with the Shuffle method if there is a large difference between the potency level of the very few top test compounds and the potency level of the rest of the active compounds in the test set, which is often the case. According to the weighting process in eq. (3), this means that the ranking of those few top test compounds dominates the Shuffle evaluation result. The problem is that in this case the partition of the test set into actives and inactives might be extremely skewed, which jeopardizes the reliable evaluation of the predicted ranking.

4.2. COMPARISON OF THE PREDICTIONS OF THE EXPERTS

According to the quantitative *PSD* evaluation, MULTICASE is superior to the human experts in the AP1 and the AP4 tests (see table 3). In AP2, AP3, and AP5, MC performed significantly better than C3 and on a comparable level with the other two, C1 and C2. Adding the results of the five tests gives an overall evaluation of the predictions of the experts. The results are shown in table 4 and lead to our overall conclusion that MULTICASE performed significantly better than one of the human experts and somewhat better than the other two. As a matter of fact, the average Phi-square value for MULTICASE, i.e. 1.535/5 = 0.31, when multiplied by the average number of molecules in the test sets, gives a chi-square value of 13.4, far exceeding the 99% confidence level (chi-square = 6.63) usually considered indicative of a good fit.

The qualitative *PSD* results are not reliable because the long ties in the predicted rankings bias the threshold between actives and inactives. This problem was discussed earlier in the previous section. We do not rank the experts by the *NRCM* results either, for as was also discussed earlier in this section, the choice of X% is a rather arbitrary parameter of the Rank Comparison method. However, a qualitative look at the *NRCM* results in table 3 confirms the global observation that MULTICASE generally performs better than C3 and on a comparable level with the other two human experts, C1 and C2. According to the Shuffle evaluation, C1 and C2 are superior to MC in the Gram tests and C1, C2, and MC performed on a comparable level in the AP3 to AP5 tests.

Table 4

Overall performance of the experts based on the quantitative Chi-square Distance. The entries here are the quantitative Chi-square Distance results taken from table 3. MC is MULTICASE; C1, C2, and C3 are the human experts. AP1-AP5 are the different tests as indicated in table 3. The five results of each expert are added in the bottom line

	MC	C1	C2	C3
AP1	0.146	0.042	0.066	0.052
AP2	0.324	0.251	0.356	0.022
AP3	0.347	0.421	0.195	0.085
AP4	0.410	0.289	0.117	0.163
AP5	0.308	0.150	0.320	0.043
Sum	1.535	1.153	1.054	0.365

C3 is in each test inferior to any of the other experts. However, the problem of the hegemony of the very few top compounds, which was also discussed earlier in this section, endangers the reliability of the Shuffle evaluation results. Indeed, for each test, the potency level of the top three to five test compounds was more than ten times higher than the potency level of the rest of the active compounds in the test set.

4. Conclusions

In this paper, we have presented three mathematical techniques for evaluating the quality of SAR predictions. Unlike any kind of correlation method which gives equal weight to each compound, irrespective of the level of potency, each methodology in this paper takes into account the fact that we are more concerned with the active compounds than with the inactive compounds. Overall, we suggest the use of the quantitative Phi-square Distance method, which appeared to be superior to the other presented techniques for evaluating the quality of activity predictions. This is the only method which does not have any conceptual uncertainties, such as X% in the Rank Comparison method. Only the quantitative Phi-square Distance can be used with data where ranking ties exist without the need of introducing (more or less) arbitrary parameters. Finally, only this technique takes the predicted level of potency fully into account.

We also conclude that MULTICASE performed significanly better than one of the human experts (C3) and somewhat better than the other two, C1 and C2. Considering that MULTICASE and C3 were the only experts without prior knowledge other than the molecular structures and the potencies of the compounds in the learning set, this is a particularly good result.

Acknowledgement

Helpful discussions with Dr. Bernard Ycart are gratefully acknowledged.

References

- [1] A.R. Baggaley, Intermediate Correlational Methods (Wiley, 1964).
- [2] M.L. Puri (ed.), Nonparametric Techniques in Statistical Inference (Cambridge University Press, 1970).
- [3] W.W. Daniel, Applied Nonparametric Statistics (Houghton Mifflin Co., Boston, 1978).
- [4] S. Wold, Technometrics 20, 4(1978)397.
- [5] R.D. Cramer, III, J.D. Bunce, D.E. Patterson and I.E. Frank, Quant. Struct.-Act. Relat. 7(1988)18.
- [6] D.E. Bailey, Probability and Statistics Models for Research (Wiley, 1971).
- [7] W.H. Berger (ed.), CRC Handbook of Tables for Probability and Statistics (The Chemical Rubber Co., Cleveland, OH, 1966), pp. 329-330.
- [8] G. Klopman, MULTICASE: A hierarchical computer automated structure evaluation program, in press.
- [9] G. Klopman, J. Amer. Chem. Soc. 106(1984)7315.