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Abstract 

In this paper, we present three new mathematical techniques for evaluating the 
predictive skills of structure-activity experts. The question addressed in this paper is how 
to evaluate the predictive ability of structure-activity experts in identifying the most active 
compounds of a set of drug candidates. The three proposed mathematical techniques axe 
based on the Phi-square Distance, the Rank Comparison, and the Shuffle method, 
respectively. They have been used to evaluate the performance of a new computer system 
and three human experts in predicting the antibacterial potencies of a series of chemical 
compounds in five different biological tests. The expert system, an artificial intelligence 
structure-activity program called MULTICASE, performed significantly better than one 
of the human experts and somewhat better than the other two. 
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1. Introduction 

In designing new drugs, it is common to venture guesses as to the biological 
activity of  the molecules planned for synthesis. These guesses are implicitly made by 
all chemists who design a new structure, and explicitly made by structure-activity 
experts who may rank for priority synthesis a set of potential candidates for biological 
evaluation. However, rarely is a process generated to evaluate how relevant these 
guesses were and very few methodologies are known to help evaluate the predictions, 
once the compounds are made and tested. 
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A number of groups have devised computer systems aimed at automating the 
prediction of biological activity of compounds, and it occurred to us that good 
validation techniques are necessary if these techniques are to be trusted and used to 
support human intuition. In the course of this study, we found that humans are often 
prone to self-indulgence about their own ability to predict. In the same vein, we found 
that automated techniques are not always as good as hoped when they are used to 
predict previously unknown facts, even when they have been validated within the 
domain of knowledge at the time. 

Given a database of chemical structures and their associated activities (e.g. 
inhibitory, antibacterial, or pesticide potencies), one can divide the database randomly 
into a training set and a test set. Using a quantitative structure-activity relationship 
(QSAR) model, which in most cases is a linear combination of some molecular 
descriptors (such as molecular volume, topological indices derived from the con- 
nectivity graph of a molecular structure, some kind of physico-chemical properties, the 
presence of  particular molecular substructures, etc.), a model can be developed from 
the training set and used to predict the activity of the compounds of the test set. This 
generally means that the model parameters, i.e. the linear coefficients of the selected 
molecular descriptors in the QSAR equation, which are determined from the training 
set, are then validated on the test set. The random partitioning of the database into a 
training set and a test set, as well as the corresponding model identification and 
validation, can be carried out repeatedly to check the stability of the QSAR model, i.e. 
to see how much the goodness of the predictions on the test set varies with the different 
random partitionings. Classical methods such as the sample F-test, chi-square, or non- 
parametric tests, as well as more recently developed techniques such as boot-strapping 
and cross-validation, are at the user's disposal. It is impossible to reference the very 
large amount of work published on this problem in the statistical literature. References 
[1-5], however, should help the interested reader to find relevant sources. 

At this point, we wish to introduce the Sharp distinction that exists between 
validation and evaluation. The validation of a QSAR model, as outlined in the previous 
paragraph, is based on a number of analyses and gives general credibility to the model. 
Evaluation, on the other hand, tells one how well the model is performing in a specific 
case, usually consisting of molecules unknown to the expert at the time of the 
development of the method. It should be noted that any kind of validation is meaning- 
less without good evaluation. Indeed, if the knowledge of the activity of some mole- 
cules contributed to the selection of the methodology, or its parameters, then the 
activity of these molecules should not be used to validate the methodology, since this 
will provide no clue as to the generality of the method outside its leaming domain. In 
a way, one may relate validation to interpolation, and evaluation to extrapolation. Our 
purpose here is not to discuss validation but to evaluate how well various techniques 
perform in a predictive mode, after they have been "validated". 

In this paper, we thus attempt to find an answer to the question: How to evaluate 
the performance of a structure-activity expert, automated or human, in predicting the 
activities of a set of new chemical compounds? Or, more precisely, since one is 
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generally more concerned with the active compounds than with the inactive 
compounds, the question is how to evaluate the performance of a QSAR technique in 
identifying the most active compounds, i.e. the best candidates for further study. The 
problem is compounded by the fact that there is no advance knowledge of how many 
of the test compounds are in the "active" category. 

An interesting analogy to the problem is weather forecasting where, for instance, 
one might wish to compare the ability of meteorologists to predict the sunny days of 
the next month. There is no advance knowledge of which days will be sunny nor, for 
that matter, of how many days, if any, will be sunny. In this paper, we tried to answer 
this kind of question by introducing new mathematical techniques for the evaluation 
of SAR predictions. Three evaluation methods based on the Phi-square, the Rank 
Comparison, and the Shuffle method will be presented and compared in an experiment 
where the predictions made by an expert system and by three human volunteer experts 
have been evaluated. 

2. Methods 

2.1. DEFINITIONS 

The problem, as we see it, can be stated as follows. An expert studies a leaming 
set of compounds whose structure and experimental activity is given. Once the leaming 
set has been rationalized and possibly validated, the expert faces a set of N test 
compounds. The experimental activity of the N compounds is known but not made 
available to the expert. The expert predicts the activity of the N test compounds, which 
can then be ranked by ascending activity as measured and as predicted by the expert. 
If the measured and the predicted rankings, as well as the level of the measured and 
the predicted activities are identical, then a perfect prediction would have been made. 
However, this is seldom the case and the question is how good is the prediction and, 
in general, how can we measure the difference between two different rankings? 

2.1.1. Phi-square Distance 

We explored the possibility of using a slightly modified chi-square test [1], 
which we call Phi-square Distance, to measure how well the prediction of the active 
test compounds match the experimentally observed active compounds. The Phi-square 
Distance between two rankings can be calculated as follows. First, the test compounds 
are divided into four categories: true positives (TP), false positive (FP), false negatives 
(FN), and true negatives (TN). True positives is the number of active compounds 
which are also predicted to be active. False positives are the rest of the compounds 
predicted to be active, i.e. inactives misclassified as actives. Similarly, false negatives 
is the number of active compounds misclassified as inactives and true negatives are 
the inactive compounds predicted correctly to be inactive. As far as mathematics is 
concemed, it is a nice feature of the Phi-square Distance that the breakpoint between 
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actives and inactives is arbitrary, therefore allowing studies to focus on the top n 
(1 < n < N) compounds. In other terms, it allows us to evaluate what the Phi-square 
Distance is between the measured and the predicted ranking considering the top n 
compounds to be active. The breakpoint, in practice, is always determined by the expert 
working with the compounds, not by the person who evaluates the predictions. As far 
as the predicted ranking is concerned, the breakpoint between actives and inactives can 
be defined in two different ways. Either the measured activity of  the nth compound 
defines the breakpoint between actives and inactives in the predicted ranking, or the 
first n compounds of the predicted ranking are considered to be active. These two 
altematives lead to what we call the quantitative and the qualitative Phi-square 
Distance methods, respectively. The Phi-square Distance, PSD,  can be calculated as 
follows: 

TP 2 F P  2 F N  2 T N  2 
P S D -  + -  + + 1 (1) 

A1 *A3 A 2 * A 3  A1 *A4 A 2 * A 4  

where A1 = TP + FN, A2 = F P  + TN, A3 = TP + FP,  and A4 = F N  + TN. 
It can easily be shown that in the case of chance predictions, i.e. when activity 

is assigned randomly to each of the test compounds, the P S D  will be equal or close 
to zero. On the other hand, perfect prediction gives a P S D  = 1. However, it should be 
noted that a perfect inverse prediction, i.e. when the predicted ranking is a perfect 
ranking of  the test compounds in the reverse order of activity, P S D  will also be equal 
to one. Equation (1) is the square of what is called the "phi coefficient" in refo [1], pp. 
26-27; however, we have done some algebraic manipulations in order to achieve a 
more readable expression. The Phi-square Distance P S D  multiplied by the number of 
test compounds N follows the chi-square distribution with one degree of freedom. This 
fact allows one to calculate the probability that a particular prediction of a test set is 
due to pure chance [6]. Thus, a chi-square value of 3.84 indicates that there is a 
5% probability of obtaining such a fit by chance. A value of 6.63 indicates only a 1% 
probability that such results could have been found by chance. It should be noted, 
however, that our objective is to measure the quality of a prediction rather than to 
calculate its probability of  being due to chance. 

It is evident that two Phi-square Distance values both equal to, say, 0.5, achieved 
with two test sets of  different size, are not equivalent as far as the probability of being 
a chance "prediction" is concemed. However, the quality of those two predictions is 
indeed the same, and only this is what counts during the course of  this study. 

2.1.2. Rank  Comparison method 

Another evaluation technique we developed for our experiment is the Rank 
Comparison method. In this method, we do not use the activity values, but rather 
compare the measured and the predicted rankings. As with the Phi-square Distance, the 
first n most active test compounds are selected as active and one counts how many of 
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the topmost compounds (K) of the predicted rankings must be considered in order to 
include a fixed percentage (X) of the n active compounds o f  the test set. A reasonable 
choice of X lies between 50% and 90%. Less than 50% would be a rather weak 
criterion, whereas a percentage above 90% should also be avoided so that a single or 
a few badly mispredicted compounds will not unduly affect the outcome of the 
evaluation. It should be noted that with the Rank Comparison method, chance 
prediction never turns out to be zero. Since the chance prediction is a fixed percentage 
times the number of test compounds, it varies with both the strength of the percentage 
criterion and the size of the test set. A simple normalizing transformation is necessary 
to make the Rank Comparison method comparable with the Phi-square Distance, 
i.e. to set the chance prediction equal to zero and the perfect prediction equal to one. 

The normalized Rank Comparison Measure (NRCM) can be calculated as 
follows: 

(X * n / K ) -  (n/N) R C M -  Chance 
NRCM = = (2) 

1 - (n/N) 1 - Chance ' 

where K is the number of the topmost compounds in the predicted ranking that should 
be considered in order to include a fixed percentage (X) of the n actives out of  the N 
test compounds. NRCM is equal to zero for chance prediction, and equal to one for 
"perfect" prediction when K = X * n. However, NRCM can also be negative, indicating 
that a tendency existed to predict inactive compounds to be active and vice versa. 

2.1.3. The Shuffle method 

We call the third evaluation technique the Shuffle method. It is similar to 
Spearman's rank correlation coefficient [7], i.e. it is based on the rank difference of the 
same object in two different rankings. The Shuffle method, unlike the Phi-square 
Distance and the Rank Comparison Measure, leads to a global index of "shuffleness", 
which is a measure of how much it is necessary to shuffle the measured ranking to 
produce the predicted ranking. Simply, the sum of the absolute differences between the 
ranks of the corresponding compounds in the measured and in the predicted ranking 
is compared to that expected to be found by random shuffling. A straightforward 
weighting process allows one to focus on predicting active compounds. Each rank 
difference is weighted by the measured activity of the corresponding compound. It can 
easily be shown that the sum of the absolute rank differences with random shuffling 
is expected to be equal to: 

N-1  
1 ~ i(i+ 1). 

N i=1 

The weighted measure of "shuffieness" (WSHF) is then given by the following equation: 
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N 
meas. activity * ABS (meas. r a n k -  pred. rank) 

i= 1 [of compound i] [of compound i] 
W S H F =  1 -  N-1 , (3) 

1_ i(i+ 1 ) ,  ( meas. activity + meas. activity) 
N i=1 2 [of compound N - i ]  [of compound i+  1] 

where the "measured activity" terms are the weighting factors. It should be noted that 
in cases where the activity is measured on an inverted scale, i.e. where the most active 
compounds are associated with the lowest numbers on the activity scale, the weighting 
factors in eq. (3) should be replaced by the corresponding reciprocal activities. WSHF 
is expected to be zero for chance prediction and equal to one for perfect prediction. 
As for NRCM, WSHF is also negative in the case of an inverted prediction. 

2.2. TIES IN THE RANKING 

Each evaluation method described in the previous section is relatively simple to 
use and easy to automate. However, there is a problem that makes the correct evalu- 
ation of predictions much more difficult. This problem arises from the common 
occurrence of ties in the ranking. Indeed, it often happens that two or more compounds 
are associated with the same activity value, forming a tie in the ranking. Actually, 
automated as well as human experts may use only a few categories to rank the whole 
set of test compounds; for example, very active, active, and inactive. Also, sometimes 
the measured activity of two compounds just happens to be the same. The existence 
of  ties in the ranking creates problems for each of the evaluation methods discussed 
above. Since it does not make sense to differentiate between compounds within a tie, 
the test compounds must not be split into actives and inactives within a tie, either in 
the measured or in the predicted ranking. This means that n should always point to the 
end of a tie in the measured ranking. For the predicted ranking, this criteron is auto- 
matically fulfilled by the quantitative Phi-square Distance method, where the splitting 
among actives and inactives is based on a threshold activity value, which means that 
a tie is always completely on one side of the threshold. However, the application of  
the qualitative Phi-square Distance method (where the number of  measured actives is 
in principle equal to the number of predicted actives) presents a serious problem, since 
the number of  measured and predicted actives might be significantly different due to 
different ties in the measured and in the predicted ranking. 

The Rank Comparison method can handle the ties in the following way. Let x 
be equal to the nearest integer to X.n ,  i.e. x is the rounded X% of the n active test 
compounds. If the xth in the predicted ranking of the first n most active compounds 
falls into a tie (T), then K in eq. (2) is calculated as follows: 

K = number of  compounds + number of compounds * 
ranked before T tied within T 

X * n - y  
(4) 
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where y and z are the numbers of  the first n most active test compounds ranked before 
T and ranked within T, respectively. 

The Shuffle method is also affected by the presence of  ties in the ranking. Both 
the measured and the predicted rank of  compound i may be tied, which means that it 
does not make sense to compare the two ranks directly. In both the measured and the 
predicted ranking, the beginning and the end of the tie including compound i 
are determined. In the case of  no ties at all, the corresponding beginnings and ends 
coincide, which means that eq. (3) is unaffected. If ties do exist, then the absolute rank 
difference in eq. (3) must be calculated as follows: 

A B S ( meas. rank - pred. rank) = 
of  compound i 

end end 

~ A B S ( m - p )  
re=beg p=beg 

(end - beg + 1)m * (end - beg + 1)p ' 
(5) 

which is the average absolute difference between the measured (m) and the predicted 
( p )  rank of  compound i taking all possible positions of  this compound within its ties 
into account. 

2.3. A WORKING EXAMPLE 

To become familiar with the rather abstract definition of  the evaluation methods 
introduced in the previous sections, let us show a simple working example. In 
table 1, the measured and the predicted ranking of  ten compounds are listed (imaginary 

data). 

Table 1 

Measured and predicted ranking of ten imaginary compounds 

Actives 

Inactives 

Measured ranking Predicted ranking 
compound act ivi ty compound activity 

A 25 
B 19 
C 18 
D 18 

E 11 
F 9 
G 9 
H 4 
I 1 
J 1 

A 28 
C 22 
E 22 
F 22 
G 22 
B 18 

H 8 
D 5 
I 3 
J 3 
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Table 1 (continued) 

Quantitative Phi-square Distance: 

N = 10, n = 4, threshold activity = 18, 

TP = 3 (A ,B ,C) ,  FP = 3 (E, F, G), FN = 1 (D), TN = 3 (H, I, J), 

A1 = 4 ,  A 2 =  6, A3 = 6 ,  A 4 = 4 ,  

PSD= 3 * 3  3*3  1 " I  3*3  + ~ + ~ + ~ -1 = 0 . 0 6 2 5 .  

Qualitative Phi-square Distance: 

N = 10, n = 4, predicted actives (A, C, E, F, G) (G is tied with C&E&F!),  

TP = 2 (A, C), FP = 3 (E, F, G), FN = 2 (B, D), TN = 3 (H, I, J), 

A1 = 4 ,  A 2 =  6, A3 = 5 ,  A4 = 5 ,  

PSD= 2 * 2  + 3*3  2 * 2  3*3  - 1  = 0 . 0 0 0 .  
4 * 5  ~ + 4 - ~  + 

Rank Comparison method: 

X = 5 0 % . N =  10, n = 4 .  

K =  1 + 4 ( 0 . 5 . 4 -  1)/1 = 5 ,  

N R C M =  0 . 5 . 4 / 5 - 4 / 1 0  = 0 . 0 0 0 .  
1 - 4  / 10 

X = 7 5 % , N =  lO, n=4 ,  

K = 6 ,  

N R C M =  0 . 7 5 . 4 / 6 - 4 / 1 0  = 0 . 1 6 7 .  
1 - 4  / 10 

Shuffle method: 

The numerator for eq. (3) is the sum of the following terms: 

2 5 . 0  = 0 (A), 

1 9 . 4 = 7 6 ( B ) ,  

1 8 . ( 1 + 0 +  1 + 2 + 2 +  1 + 0 +  1 ) / ( 3 - 2 +  1 ) / ( 5 - 2 +  1 ) =  18 (C), 

1 8 . ( 5 + 4 ) / 2 = 8 1  (D), 

1 3 .  (3 + 2 +  1 + 0 ) / 4 =  19.5 (E), 

9 . ( 4 + 3 + 2 + 1 ) / 4 = 2 2 . 5 ( F ) ,  

9 . ( 5 + 4 + 3 + 2 ) / 4 = 3 1 . 5  (G), 

4 * 1 = 4 (H), 

1 * 0 = 0 (I), and 

1 * 0 = 0 (J). 

The denominator for eq. (3) is equal to 0.1(1(1 + 19) + 3(4+18) + 6(9 + 18) + 10(9 + 13) 
+ 15(13 + 9) + 21(18 + 9) + 28(18 + 4) + 36(19 + 1) + 45(25 + 1)) = 387.1, and WSHF is thus equal 
to: 

WSItF = 1 - (0 + 76 + 18 + 81 + 19.5 + 22.5 + 31.5 + 4 + 0 + 0)/387.1 = 0.348. 
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From a casual inspection of table 1, the measured and the predicted rankings do 
not appear to be too much different. However, focusing on the top four active com- 
pounds (A, B, C, D), the predicted ranking turns out to be not much better than chance 
prediction (see the PSD and the NRCM results). Only the Shuffle method gives a 
somewhat higher value (0.348), which means that the overall prediction is better than 
the prediction of the top four compounds. 

2.4. DATA 

An experiment has been run to evaluate the predictive power of our new artificial 
intelligence structure-activity technique, which is called MULTICASE [8]. MULTI- 
CASE is the recent and totally redesigned version of the CASE (Computer Automated 
Structure Evaluation) program [9]. In the experiment, the predictions of the anti- 
bacterial potencies of a series of compounds in five different tests by MULTICASE 
and three human experts have been compared. Several hundred compounds were tested 
for their antibacterial potency in five different standard tests (Gram Negative Mics 
(AP1), Gram Positive Mics (AP2), DNA Gyrase Inhibition (AP3), Mean Subcutaneous 
Protective Dose in Mice (AP4), and Mean Oral Protective Dose in Mice (AP5)) by a 
cooperating pharmaceutical company. Of these, sixty-nine were selected by one of the 
experts to become the learning set and fifty-three were to be used as a test set. No 
information beyond the molecular structures of the leaming set was given. No prior 
or additional information was to be used by the experts. The actual number of test 
compounds in the DNA Gyrase test and in the Mice tests is l e s s -  forty-four and 
thirty-four, respectively - because the experimental activity of some of the test 
compounds had not been measured in these tests. The breakpoint between actives and 
inactives was determined in all of the five tests by one of the human experts, C2, based 
on the standards of the pharmaceutical company. 

3. Results 

In table 2(a) to 2(e), the comparison of the rankings of the test compounds in 
the five tests is presented. In each table, the leftmost column is the measured ranking 
(ME), followed by the predicted ranking by MULTICASE (MC) and by the three 
human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by 
vertical bars altemating on the left- and on the right-hand side of the columns. The 
tables are split into two paats, separating the measured actives from the measured 
inactives, as well as the predicted actives from the predicted inactives for all of the 
experts, based on the breakpoint defined by the company standards. The three human 
experts are leading chemists of the cooperating pharmaceutical company. However, 
their preknowledge of the results was somewhat different. Indeed, both C1 and C2 had 
been working for several years with antibacterial agents and are experts in that area. 
C1 compiled the data set and selected the leaming and the test set, C2 had been 
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Table 2(a) 

Comparison of  the rankings of the test compounds in the Gram Negative Mics Test. The leftmost 
column is the measured ranking (ME), followed by the predicted ranking of  MULTICASE (MC) 
and of  the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked 
by vertical bars alternating on the left- and on the right-hand side of the columns 

ME MC C1 C2 C3 

141 
5ol 

129 

ii t 
148 
J" Aetives 18 
42 

111 
Inaetives 1 37221710 

26 
30 

52 
134 

39 

31 

21 
24 

27 
44 

23 
o91 
19 

00 "[ 
33 
02 

06 
121 
05 

50 

15 

!2 
49 
14 
11 
17 
37 
20 
26 
30 
38 
4O 
39 
31 
08 
21 
24 
16 
27 
44 
47 
19 
13 
33 

10 
52 

32i 
46 
22 
34 
28 
25 
35 
51 
07 
00 
02 
01 
04 
06 
12 
05 
03 
36 

43 
42 
37 
44 
411 
501 
32 
49 
48 
38 
40 
39 
45 

29 
11 
22 
26 
30 
52 
15 
31 
47 
46 
18 
34 
21 
24 
16 
27 
23 

10 
17 

19 

25 

13 I 
33 

02 

°' I 03 
36 

06 
o4[ 

29 
43 
26 
15 

50 
32 
49 
46 
48 
14 
42 
11 
10 
17 
22 
37 
30 
38 
40 
52 
34 
39 
45 
25 
31 
35 
51 
08 
21 
24 
16 
27 
19 
12 
18 
28 
47 
23 
09 
13 
33 
20 
07 
01 

36 
05 
03 

41 
29 
43 
14 
26 
30 
52 
45 
15 
19 

48 
42 
11 
10 
22 
38 
34 
28 
25 
51 
24 
5O 
46 
17 
4O 
39 
O8 
21 
27 
47 
O7 
12 
18 
37 
31 
16 
23 
O0 
33 
O1 
32 
49 
2O 
35 
44 
O9 
13 
O2 
O4 
O6 
O5 
O3 
36 
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Table 2(b) 

Comparison of the rankings of the test compounds in the Gram Positive Mics Test. The  leftmost 
column is the measured ranking (ME), followed by the predicted ranking of  MULTICASE (MC) 
and of  the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked 
by vertical bars alternating on the left- and on the fight-hand side of  the columns 

ME MC CI C2 C3 

Acfives 

142 
431 

141 
t41 

138 

37 
49 
50 

30 
46 

42 
38 
37 
49 
50 
32 
40 
39 
41 
31 
30 
17 

Inactives 
171 

40 
48 
211 
08 
22 
24 
34 
35 
39 
44 
151 [" 
27 
29 
18 
45 

25 
2ol 

I l° 19 
23 
121 

52 
281 

[ 47 
o71 

Io9 
511 

o61 
Io4 

33 
Ioo 

36 

43 
24 

26 
48 
45 

44 
18 
23 
15 
10 
12 
52 
35 
21 
27 
28 
47 
46 
08 
34 
11 
29 
16 
25 
20 
19 
07 

05 
06 
04 
03 
33 
00 
01 
36 

42 
43 
50 
44 
41 
38 
37 
49 
32 
48 
45 

I 31 
26 
46 
40 
22 
24 
34 
39 
52 
30 
15 
11 
27 
29 
28 
47 
51 
33 
14 
17 
21 
18 
19 
23 
08 
25 
I0 
12 
13 
16 
20 
07 
02 
03 
36 
35 
09 
06 
00 

[ o5 
04 
01 

42 
43 
41 
50 
26 

14 
38 
31 
37 
49 
3O 
46 
17 
32 
4o! 
48 
22 
24 
34 
39 
4 4  
15 

45 
16 
23 
28 
21 
08 
35 
19 
52 
51 
11 
29 
18 
25 
20 
10 
12 
13 
47 
09 
07 
02 
03 
33 
00 
05 
06 
04 
01 
36 

41 
14 
26 
17 
34 
52 
28 
51 

21 
22 
24 
29 
25 
42 
43 

3 8  
37 
50 
30 
46 
4O 
48 
08 

i39 
15 
11 
27 
10 
19 
23 
12 

45 
49 
32 
35 
44 
18 
16 
20 
13 
47 
07 
09 
02 
05 
06 
04 
03 
33 
00 
01 
36 
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Table 2(c) 

Comparison of the rartldngs of the test compounds in the DNA Gyrase Test. The leftmost column 
is the measured ranking (ME), followed by the predicted ranking of MULTICASE (MC) and of the 
three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked by vertical 
bars alternating on the left- and on the right-hand side of the columns 

ME MC C1 C2 C3 

42 
44 
41 
43 
21 
26 
29 
39 

Acfives 30 
32 

15 
Inacfives 19 

20 
27 
31 
34 
46 
48 
14 
25 
11 
lol 
28 
13 
18 
22 
23 
24 
47 

16 
12 

[o2 
45 

133 
00 
05 
06 

136 
01 

38 
40 
44 
41 

43 143 
21 39 

26 i i  
39 32 
27 31 
25 I1 
24 

J 29 I 121 
32 i26 
3o i29 
20 i30 
31 15 
34 27 
46 34 
II 48 
13 28 
16 i22 
42 i45 
15 33 
19 24[ 
48 19 
14 20 
10 46 
28 14 
18 25 
22 10 
23 13 
47 18 
07 23 
08 07 
09 08 
12 16 
02 12 
45 09 

0033 00~5 
05 

36 
O1 [01 

43 

38 
40 
42 
26 
29 
39 
30 
32 
15 
27 
31 
34 
46 
48 
14 
25 
11 
10 
28 
22 
24 
47 
12 
45 
21 
19 
20 
13 
23 
07 
08 
16 
33 
18 
09 
02 
05 
06 
00 
36 
01 

43 
26 
29 

...... 30 

34 
11 

41 
10 
22 
12 
38 
40 
42 
21 
39 
19 
27 
46 
14 
28 
24 
47 
02 
45 
00 
31 
48 
25 
23 
44 
32 
20 
13 
18 
07 
08 
09 
16 
33 
05 
06 
36 
01 
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Table 2(d) 

Comparison of the rankings of the test compounds in the Mean Subcutaneous Protective Dose in Mice 
Test. The leftmost column is the measured ranking (ME), followed by the predicted ranking of MULTI- 
CASE (MC) and of the three human experts, C1, C2, and C3, respectively. The ties in the rankings 
are marked by vertical bars alternating on the left- and on the right-hand side of the columns 

ME MC C1 C2 C3 

132 
29 
41 

149 
50 

Acdves [ 11 
1 43 

Inactives 
34 

L 
10 
15 
37[ 
31 
42 

22 
40 
241 

12o 
141 

t: 
39 

21 
35 

27 

150 

29 
41 
49 

48 
11 
43 
34 
26 
25 
30 
46 
10 
15 
31 
42 
17 
18 
22 
40 

j24 
2o 

14 
38 
08 
39 
13 
21 
35 
16 
27 

i 

32 ] 41 
41 32 
49 29 

150 49 
11 50 
43 11 
34 43 
48 34 
46 26 
37 48 
31 46 
42 42 

29 [ 25 
26 30 
30 10 
15 15 
17 37 
18 31 

40 22 
24  24 
141 
38  
39 I [ 08 
35 18 
25 40 
10 38 
08 39 
21 13 
27 35 
20 16 
00 20 
13 21 
16 27 

41 
50 
II 
[43 
34 
26 
17 
14 

22 I 
24 

48 
30 
46 
15 
42 
38 
27 
32 
49 
25 
10 
37 
31 
18 
40 
20 
00 
08 
39 
13 
21 
35 
16 
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Table 2(e) 

Comparison of the rankings of the test compounds in the Mean Oral Protective Dose in Mice Test. The 
leflmost column is the measured ranking (ME), followed by the predicted ranking of MULTICASE 
(MC) and of the three human experts, C1, C2, and C3, respectively. The ties in the rankings are marked 
by vertical bars alternating on the left- and on the right-hand side of the columns 

ME MC C1 C2 C3 

149 
321 

146 

41 
15o 
11 
34 

Actives 43 
148 

Inactives ~ 
118 
42 

131 
391 

38 

35 

14 
16 
21 

14~ 41 32 [ 50 
29 

49 
32 

41 46 
50 34 
48 43 

48 
] 1 37 
46 42 
34 29 
43 11 
22 22 

I 18 24 
42 30 
24 40 
30 15 
40 17 
15 31 
17 39  
31 38  
39  26 
08 14 
25 18 
38 
13 

26 
35 
10 27 
14 13 
16 20 
21 35 
27 16 

49 
29 
41 
50 

32 
46 
11 
34 
43 
48 
24 
30 
17 
22 
37 
42 
31 
25 
26 
00 
15 
18 
40 
39 
08 
38 
13 
20 
35 
10 
14 
16 
21 
27 

41 
34 
43 
17 
26 
14 
241 
46 
29 
50 
48 
22 
37 
30 
40 
15 
39 
25 
38 

08 

49 
32 
18 
42 
O0 
31 
13 
20 
35 
16 
21 
27 
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Table 3 

Evaluation of the rankings of the test compounds in different tests. In each test, the first line is 
the evaluation of the MULTICASE ranking (MC), the second, third, and fourth lines are that of 
the human experts, C1, C2, and C3, respectively. In each test, the first column is the quantitative 
Chi-square Distance, the second column is the qualitative Chi-square Distance, the third, fourth, 
and fifth columns are the Rank Comparison Measures with X = 50, 75, and 90%, respectively, 
and f'mally, the last column is the result of the Shuffle evaluation. N is the total number of test 
compounds and n is the number of the active test compounds. 

Qnt CSD Qlt CSD NRCM NRCM NRCM WSHF 
X = 50% X = 75% X = 90% 

API: Gram Negative Mics Test (N = 53, n = 11) 

MC 0.146 0.028 0.201 0.069 0.028 0.548 
C1 0.042 0.216 0A12 0.167 0.160 0.577 
C2 0.066 0.064 0.153 0.103 0.089 0.577 
C3 0.052 0.024 0.118 0.050 0.011 0.432 

AP2: Gram Positive Mics Test (N = 53, n = 12) 

MC 0.324 0.324 0.569 0.538 0.462 0.496 
C 1 0.251 0.259 0.546 0.392 0.221 0.7.71 
C2 0.356 0.282 0.660 0.369 0.308 0.797 
C3 0.022 0.000 0.082 0.117 0.136 0.304 

AP3: DNA Gyrase Inhibition Test (N = 44, n = 12) 

MC 0.347 0.521 0.625 0.656 0.390 0.588 
C 1 0.421 0.342 1.000 0.509 0.390 0.749 
C2 0.195 0.145 0.312 0.214 0.187 0.440 
C3 0.085 0.091 0.214 0.163 0.042 0.201 

AP4: Mean Subcutaneous Protective Dose (N = 34, n = 7) 

MC 0.410 0.410 0.669 0.637 0.594 0.646 
C1 0.289 0.289 0.370 0.370 0.370 0.504 
C2 0.117 0.475 0.530 0.493 0.481 0.707 
C3 0.163 0.163 0.370 0.148 0.020 0.203 

AP5: Mean Oral Protective Dose (N = 34, n = 10) 

MC 0.308 0.000 0.595 0.390 0.080 0.653 
C 1 0.150 0.514 0.764 0.722 0.356 0.636 
C2 0.320 0.673 0.871 0.732 0.692 0.759 
C3 0.043 0.034 0.128 0.102 0.039 - 0.206 
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intimately involved with the synthesis of the compounds. C3 is the only expert with 
apparently no a priori knowledge about the set of compounds used in the experiment. 

The evaluation results are presented in table 3. Each ranking in each test is 
evaluated in six different ways. These are the quantitive Phi-square Distance, the 
qualitative Phi-square Distance, and the Rank Comparison Measure with X = 50, 75, 
and 90%, each focusing on the active test compounds, and finally, the Shuffle method. 
The total number of the test compounds (N) and the number Of the active test com- 
pounds (n) is also shown for each test in table 3. 

4. Discussion 

4.1. DISCUSSION OF THE METHODOLOGIES 

If the measured potency threshold is greater than any of the predicted potencies, 
i.e. when there are neither true nor false positives, even a perfect ranking gives an 
undefined PSD value when using the quantitative Phi-square Distance. It should be 
noted, however, that this is more of an advantage than a disadvantage of the method. 
Indeed, the quantitative Phi-square Distance characteristics are such that even if the 
ranking itself is perfect, if none of the active compounds are predicted to be active, 
then this prediction is definitely a bad prediction. 

In the theoretical section of this paper, it was mentioned that the qualitative Phi- 
square Distance method, where the number of measured actives is in principle equal 
to the number of predicted actives, had a serious drawback in practice. This is vividly 
demonstrated in, for example, the Oral Protective Dose case where the number of 
active test compounds is ten (see table 3). It can be seen that the qualitative Phi-square 
Distance is equal to zero for the MULTICASE prediction, which is obviously 
nonsense. The reason for the strange result can be found in table 2(e), where it is seen 
that the tenth compound in the MC ranking is tied with all of the remaining compounds. 
This means that the whole test set is considered to contain only active compounds, i.e. 
there are neither false nor true negatives causing the undefined PSD result. 

The Rank Comparison method evaluates the rankings regardless of the predicted 
potency levels. The use of ranks eliminates the problems which would otherwise occur 
when attempting to relate potencies for each of the scales used for prediction s . This 
is not, however, necessarily an advantage over the quantitative Phi-square Distance 
method for, as we stated earlier in this section, the evaluation of the rankings does not 
make too much sense when nothing can be said about the predicted potency levels. 
Furthermore, even when restricting ourselves to the ranks, there are still problems with 
the Rank Comparison method. Indeed, we find that there are too many degrees of 
freedom involved with the choice of X%. It is clear that X% should fall somewhere 
between 50% and 90%, but there is no clue as to what the optimum value ought to 
be. We cannot even say that X = 75% or X = 90% is always a sharper criterion than 
X = 50% (see, for instance, in table 3 the C3 prediction in the Gram Positive Mics test 
or the C1 prediction in the Subcutaneous Protective Dose test). In addition, we find, 
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for example, that the C1 prediction of the active test compounds in the DNA Gyrase 
test is better than that of MC with X = 50% (1.000 versus 0.625), but the opposite is 
true with X = 75% (0.509 versus 0.656) and with X = 90%, C1 and MC are both found 
to be equal to 0.390. 

Thus, in general, the numerical value of the Rank Comparison Measure is a 
rather unpredictable function of X%. This makes the utility of the method quite 
questionable. This problem is even more serious when one considers that with a 
"perfect" prediction, NRCM is always equal to one, regardless of X% (see eq. (2)). This 
means that the level of "perfectness" is not taken into account in the Rank Comparison 
method. In other words, the fact that it is easier to predict "perfectly" with X = 50% 
than with X = 90% is completely ignored. However, it is possible that the comparison 
of two different rankings on different levels of X%, which may be a rather complicated 
procedure, is the correct way of using the Rank Comparison method. 

A serious problem arises with the Shuffle method if there is a large difference 
between the potency level of the very few top test compounds and the potency level 
of the rest of the active compounds in the test set, which is often the case. According 
to the weighting process in eq. (3), this means that the ranking of those few top test 
compounds dominates the Shuffle evaluation result. The problem is that in this case 
the partition of the test set into actives and inactives might be extremely skewed, which 
jeopardizes the reliable evaluation of the predicted ranking. 

4.2. COMPARISON OF THE PREDICI'IONS OF THE EXPERTS 

According to the quantitative PSD evaluation, MULTICASE is superior to the 
human experts in the AP1 and the AP4 tests (see table 3). In AP2, AP3, and AP5, MC 
performed significantly better than C3 and on a comparable level with the other two, 
C1 and C2. Adding the results of the five tests gives an overall evaluation of the 
predictions of the experts. The results are shown in table 4 and lead to our overall 
conclusion that MULTICASE performed significantly better than one of the human 
experts and somewhat better than the other two. As a matter of fact, the average Phi- 
square value for MULTICASE, i.e. 1.535/5 = 0.31, when multiplied by the average 
number of molecules in the test sets, gives a chi-square value of 13.4, far exceeding 
the 99% confidence level (chi-square = 6.63) usually considered indicative of a good 
fit. 

The qualitative PSD results are not reliable because the long ties in the predicted 
rankings bias the threshold between actives and inactives. This problem was discussed 
earlier in the previous section. We do not rank the experts by the NRCM results either, 
for as was also discussed earlier in this section, the choice of X% is a rather arbitrary 
parameter of the Rank Comparison method. However, a qualitative look at the NRCM 
results in table 3 confirms the global observation that MULTICASE generally performs 
better than C3 and on a comparable level with the other two human experts, C1 and 
C2. According to the Shuffle evaluation, C1 and C2 are superior to MC in the Gram 
tests and C1, C2, and MC performed on a comparable level in the AP3 to AP5 tests. 
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Table 4 

Overall performance of the experts based on the quantitative Chi-square 
Distance. The entries here are the quantitative Chi-square Distance results 
taken from table 3. MC is MULTICASE; C1, C2, and C3 are the human 
experts. AP1-AP5 are the different tests as indicated in table 3. The five 
results of each expert are added in the bottom line 

MC C1 C2 C3 

AP1 0.146 0.042 0.066 0.052 

AP2 0.324 0.251 0.356 0.022 

AP3 0.347 0.421 0.195 0.085 

AP4 0.410 0.289 0.117 0.163 

AP5 0.308 0.150 0.320 0.043 

Sum 1.535 1.153 1.054 0.365 

C3 is in each test inferior to any of the other experts. However, the problem of the 
hegemony of the very few top compounds, which was also discussed earlier in this 
section, endangers the reliability of the Shuffle evaluation results. Indeed, for each test, 
the potency level of the top three to five test compounds was more than ten times 
higher than the potency level of the rest of the active compounds in the test set. 

4. Conclusions 

In this paper, we have presented three mathematical techniques for evaluating 
the quality of SAR predictions. Unlike any kind of correlation method which gives 
equal weight to each compound, irrespective of the level of potency, each methodology 
in this paper takes into account the fact that we are more concemed with the active 
compounds than with the inactive compounds. Overall, we suggest the use of the 
quantitative Phi-square Distance method, which appeared to be superior to the other 
presented techniques for evaluating the quality of activity predictions. This is the only 
method which does not have any conceptual uncertainties, such as X% in the Rank 
Comparison method. Only the quantitative Phi-square Distance can be used with data 
where ranking ties exist without the need of introducing (more or less) arbitrary 
parameters. Finally, only this technique takes the predicted level of potency fully into 
account. 

We also conclude that MULTICASE performed significanly better than one of 
the human experts (C3) and somewhat better than the other two, C1 and C2. Con- 
sidering that MULTICASE and C3 were the only experts without prior knowledge 
other than the molecular structures and the potencies of the compounds in the learning 
set, this is a particularly good result. 
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